Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38214698

RESUMO

Two novel strains were isolated from wetland soils in Goyang, Republic of Korea. The two Gram-stain-positive, facultatively anaerobic, rod-shaped bacterial-type strains were designated MW4T and MW9T. Phylogenomic analysis based on whole-genome sequences suggested that both strains belonged to the genus Cellulomonas. The cells of strain MW4T were non-motile and grew at 20-40 °C (optimum, 35 °C), at pH 6.0-10.0 (optimum, pH 8.0) and in the presence of 0-1.0% NaCl (optimum, 0 %). The cells of strain MW9T were non-motile and grew at 20-40 °C (optimum, 35 °C), at pH 5.0-9.0 (optimum, pH 8.0) and in the presence of 0-1.0% NaCl (optimum, 0 %). The average nucleotide identity (77.1-88.1 %) and digital DNA-DNA hybridization values (21.0-34.8 %) between the two novel strains and with their closely related strains fell within the range for the genus Cellulomonas. The novel strains MW4T and MW9T and reference strains possessed alkane synthesis gene clusters (oleA, oleB, oleC and oleD). Phylogenomic, phylogenetic, average nucleotide identity, digital DNA-DNA hybridization, physiological and biochemical data indicated that the novel strains were distinct from other members of the family Cellulomonadaceae. We propose the names Cellulomonas alba sp. nov. (type strain MW4T=KACC 23260T=TBRC 17645T) and Cellulomons edaphi sp. nov. (type strain MW9T=KACC 23261T=TBRC 17646T) for the two strains.


Assuntos
Cellulomonas , Ácidos Graxos , Ácidos Graxos/química , Análise de Sequência de DNA , Filogenia , Solo , Cloreto de Sódio , Áreas Alagadas , Composição de Bases , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Nucleotídeos
2.
J Microbiol Biotechnol ; 34(2): 457-466, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38044713

RESUMO

Cellobiose dehydrogenases (CDHs) are a group of enzymes belonging to the hemoflavoenzyme group, which are mostly found in fungi. They play an important role in the production of acid sugar. In this research, CDH annotated from the actinobacterium Cellulomonas palmilytica EW123 (CpCDH) was cloned and characterized. The CpCDH exhibited a domain architecture resembling class-I CDH found in Basidiomycota. The cytochrome c and flavin-containing dehydrogenase domains in CpCDH showed an extra-long evolutionary distance compared to fungal CDH. The amino acid sequence of CpCDH revealed conservative catalytic amino acids and a distinct flavin adenine dinucleotide region specific to CDH, setting it apart from closely related sequences. The physicochemical properties of CpCDH displayed optimal pH conditions similar to those of CDHs but differed in terms of optimal temperature. The CpCDH displayed excellent enzymatic activity at low temperatures (below 30°C), unlike other CDHs. Moreover, CpCDH showed the highest substrate specificity for disaccharides such as cellobiose and lactose, which contain a glucose molecule at the non-reducing end. The catalytic efficiency of CpCDH for cellobiose and lactose were 2.05 x 105 and 9.06 x 104 (M-1 s-1), respectively. The result from the Fourier-transform infrared spectroscopy (FT-IR) spectra confirmed the presence of cellobionic and lactobionic acids as the oxidative products of CpCDH. This study establishes CpCDH as a novel and attractive bacterial CDH, representing the first report of its kind in the Cellulomonas genus.


Assuntos
Desidrogenases de Carboidrato , Cellulomonas , Cellulomonas/genética , Cellulomonas/metabolismo , Celobiose/metabolismo , Lactose , Açúcares Ácidos , Espectroscopia de Infravermelho com Transformada de Fourier , Protocaderinas
3.
Arch Microbiol ; 205(12): 377, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940730

RESUMO

An isolate of a bacterium recovered from an endometrial biopsy failed to be identified by MALDI-TOF mass spectrometry and was subjected to 16S rRNA sequencing. The obtained sequence was compared by BLASTn against the NCBI database, which revealed that the most closely related species was Cellulomonas hominis and Cellulomonas pakistanensis, with 98.85% and 98.45% identity, respectively. Phenotypic characterisation and genome sequencing were performed. The isolate was facultative anaerobic, gram-positive, motile, non-spore forming, and rod-shaped. Cell wall fatty acid profiling revealed that 12-methyl-tetradecanoic acid was the most abundant fatty acid (36%). The genome size was 4.25 Mbp with a G + C content of 74.8 mol%. Genomic comparison of species closely related to this strain showed that all digital DNA-DNA hybridisation (dDDH) and mean orthologous nucleotide identity (OrthoANI) values were below published species thresholds (70% and 95-96%, respectively). Based on these data, we conclude that this isolate represents a new bacterial species belonging to the family Cellulomonadaceae and the phylum Actinomycetota. We propose the name Cellulomonas endometrii sp. nov. The type strain is Marseille-Q7820T (= CSUR Q7820 = CECT 30716).


Assuntos
Cellulomonas , Cellulomonas/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Filogenia , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/análise
4.
Appl Microbiol Biotechnol ; 107(13): 4261-4274, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37212884

RESUMO

The development of multifunctional particles using polymeric scaffolds is an emerging technology for many nanobiotechnological applications. Here we present a system for the production of multifunctional complexes, based on the high affinity non-covalent interaction of cohesin and dockerin modules complementary fused to decameric Brucella abortus lumazine synthase (BLS) subunits, and selected target proteins, respectively. The cohesin-BLS scaffold was solubly expressed in high yield in Escherichia coli, and revealed a high thermostability. The production of multienzymatic particles using this system was evaluated using the catalytic domain of Cellulomonas fimi endoglucanase CenA recombinantly fused to a dockerin module. Coupling of the enzyme to the scaffold was highly efficient and occurred with the expected stoichiometry. The decavalent enzymatic complexes obtained showed higher cellulolytic activity and association to the substrate compared to equivalent amounts of the free enzyme. This phenomenon was dependent on the multiplicity and proximity of the enzymes coupled to the scaffold, and was attributed to an avidity effect in the polyvalent enzyme interaction with the substrate. Our results highlight the usefulness of the scaffold presented in this work for the development of multifunctional particles, and the improvement of lignocellulose degradation among other applications. KEY POINTS: • New system for multifunctional particle production using the BLS scaffold • Higher cellulolytic activity of polyvalent endoglucanase compared to the free enzyme • Amount of enzyme associated to cellulose is higher for the polyvalent endoglucanase.


Assuntos
Celulase , Cellulomonas , Celulase/metabolismo , Cellulomonas/genética , Cellulomonas/metabolismo , Domínio Catalítico , Proteínas de Bactérias/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-37227268

RESUMO

Six facultative anaerobic, Gram-stain-positive, oxidase-negative, rod-shaped bacteria (strains zg-B89T, zg-B12, zg-Y338T, zg-Y138, zg-Y908T and zg-Y766), were isolated from the intestinal contents of Marmota himalayana in Qinghai Province, PR China. The 16S rRNA gene sequence analysis showed that zg-B89T showed highest similarity to Cellulomonas iranensis NBRC 101100T (99.5 %), zg-Y338T to Cellulomonas cellasea DSM 20118T (98.7 %), and zg-Y908T to Cellulomonas flavigena DSM 20109T (99.0 %). Phylogenetic and phylogenomic analysis based on 16S rRNA gene and 881 core genes revealed that these six strains formed three separate clades in the genus Cellulomonas. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between these three novel species and all members of the genus Cellulomonas were below species thresholds (95-96 % for ANI and 70 % for dDDH). The DNA G+C contents of zg-B89T, zg-Y338T and zg-Y908T were 73.6, 72.9 and 74.5 %, respectively. Strains zg-B89T and zg-Y908T had anteiso-C15 : 0, C16 : 0 and anteiso-C15 : 1 A, and zg-Y338T had anteiso-C15 : 0, C16 : 0 and iso-C16 : 0 as the main fatty acids. All novel type strains had MK-9 (H4) as the predominant respiratory quinone, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside as the major polar lipids, and rhamnose, ribose and glucose as the cell-wall sugars. The peptidoglycan amino acids of zg-B89T, zg-Y338T and zg-Y908T contained ornithine, alanine, glutamic acid and aspartic acid (except for zg-Y338T). Based on genotypic, phenotypic, phylogenetic and biochemical properties, the six uncharacterized strains represent three novel species in the genus Cellulomonas, for which the names Cellulomonas xiejunii sp. nov. (type strain zg-B89T=GDMCC 1.2821T=KCTC 49756T), Cellulomonas chengniuliangii sp. nov. (type strain zg-Y338T=GDMCC 1.2829T=KCTC 49754T) and Cellulomonas wangsupingiae sp. nov. (type strain zg-Y908T=GDMCC 1.2820T=KCTC 49755T) are proposed, respectively.


Assuntos
Cellulomonas , Ácidos Graxos , Animais , Ácidos Graxos/química , Fosfolipídeos/química , Conteúdo Gastrointestinal , Marmota , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana
6.
Arch Microbiol ; 205(4): 130, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947219

RESUMO

The demand for enzymes is increasing continuously due to their applications in various avenues. The pectin-hydrolyzing bacteria, Cellulomonas sp. and Bacillus sp., isolated from forest soil have the potential to produce industrially important enzymes (pectinase, PGase, Cellulase, and xylanase). However, these bacteria have different optimal cultural conditions for pectinase production. The optimal cultural conditions for Cellulomonas sp. were room temperature (25-26℃), pH 7, 1% inoculum volume, and 1.5% citrus pectin with 8.82 ± 0.92 U/mL pectinase activity. And Bacillus sp. illustrated the highest pectinase activity (12.35 ± 0.72 U/mL) at room temperature, pH 10, 1% inoculum volume, and 1.5% pectin concentration. Among the different agro-wastes, the orange peel was found to be the best substrate for pectinase, PGase, and cellulase activity whereas barley straw for xylanase activity. Further, Cellulomonas sp. and Bacillus sp. illustrated higher pectinase activity from commercial pectin compared to orange peel showing their preference for commercial citrus pectin. In addition, the optimization by the Box-Behnken design increased pectinase activity for Cellulomonas sp., while a noticeable increase in activity was not observed in Bacillus sp. Besides, all the agro-wastes exploited in this study can be used for pectinase, PGase, and xylanase production but not cellulase. The study revealed that each bacteria has its specific optimal conditions and there is a variation in the capacity of utilizing the various lignocellulosic biomass.


Assuntos
Bacillus , Cellulomonas , Poligalacturonase , Biomassa , Pectinas
7.
Environ Sci Pollut Res Int ; 30(9): 23510-23526, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36327070

RESUMO

This study investigated the possibility of COVID-19 medical face masks to affect bacterial and macrofaunal communities in open soil environment. An estimated 1.24 trillion of face masks have been used and discarded as a result of the COVID-19 pandemic, with a significant part of this ending up in the soil environment, where they degrade gradually over time. Because bacteria and macrofauna are sensitive indicators of changes in soil ecosystem, we investigated possible impacts of face masks on population, distribution, and diversity of these soil species. Effect on soil bacterial community was studied by both culture-based and advanced molecular (metagenomics) approach, while impact on macrofauna was investigated by examining monoliths around heap of masks for soil insects. In both cases, control soil experiments without face masks were also set up and monitored over a period of 48 weeks. The study found that the presence of face masks led to a more diverse bacterial community, although no influence on overall bacterial population was evidenced. More importantly, bacteria belonging to the genera Cellulomonas and Acinetobacter were found prominently around face masks and are believed to be involved in biodegradation of the masks. The bacterial community around the masks was dominated by Proteobacteria (29.7-38.7%), but the diversity of species increased gradually with time. Tiny black ants (Monomorium invidium) were attracted to the face masks to take advantage of water retained by the masks during the period of little rainfall. The heaps of face masks also provided shelter and breeding "haven" for soil insects, notably the red cotton bug (Dysdercus suturellus) and house cricket (Acheta domesticus), thereby impacting positively on the population of insect species in the environment. This study provides insights into the actual impacts of face masks on soil organisms under normal outdoor environmental conditions.


Assuntos
COVID-19 , Cellulomonas , Gryllidae , Heterópteros , Animais , Humanos , Pandemias , Ecossistema , Máscaras , Insetos , Bactérias
8.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36264676

RESUMO

Six Gram-stain-positive, aerobic or facultative anaerobic, catalase-positive, urease- and oxidase-negative, rod-shaped bacteria (zg-ZUI157T/zg-ZUI40, zg-ZUI222T/zg-ZUI199 and zg-ZUI188T/ zg-ZUI168) were characterized by a polyphasic approach. Optimal growth of the six strains was observed at pH 7.0 and 28 °C. Phylogenetic analyses based on the 16S rRNA gene and 247 core genes revealed that they belong to genus Cellulomonas. The three type strains have low digital DNA-DNA hybridization (19.3-30.1%) and average nucleotide identity values (78.0-85.5%) with all available genomes in the genus Cellulomonas, and a DNA G+C content range of 73.0-74.6 mol%. The major fatty acids detected in strain pairs zg-ZUI157T/zg-ZUI40 and zg-ZUI 222T/zg-ZUI199 were C16:0, anteiso-C15:0 and anteiso A-C15:1, and C16:0, anteiso-C15:0, anteiso A-C15:1 and anteiso-C17:0 in strain pair zg-ZUI188T/zg-ZUI168. Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol mannosides were the major polar lipids detected in the three novel species. MK-9(H4) was the predominant quinone detected in strains zg-ZUI222T (87.4 %) and zg-ZUI188T (91.4 %), and MK-9(H4) (49.1 %) and MK-8 (43.4 %) in strain zg-ZUI157T. The cell-wall sugars detected in the three novel species mainly contained rhamnose. The cell-wall peptidoglycan type of the three novel species was A4ß, with an inferred l-Orn-d-Asp interpeptide bridge for strains zg-ZUI157T and zg-ZUI222T, and l-Orn-d-Glu for strain zg-ZUI188T. Based on the results of the phenotypic, phylogenetic, genomic hybridization, average nucleotide identity and chemotaxonomic analyses, the six strains should be classified as belonging to three novel Cellulomonas species, for which the names Cellulomonas dongxiuzhuiae sp. nov. (zg-ZUI157T=GDMCC 1.2559T=KCTC 49678T), Cellulomonas wangleii sp. nov. (zg-ZUI222T=GDMCC 1.2501T=KCTC 49675T) and Cellulomonas fengjieae sp. nov. (zg-ZUI188T=GDMCC 1.2563T=KCTC 49674T) are proposed.


Assuntos
Cellulomonas , Animais , RNA Ribossômico 16S/genética , Filogenia , Marmota , Catalase/genética , Composição de Bases , Peptidoglicano/química , Conteúdo Gastrointestinal , Cardiolipinas , Urease/genética , Ramnose , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Ácidos Graxos/química , Fosfatidilinositóis , Nucleotídeos , Açúcares , Quinonas , Manosídeos
9.
Artigo em Inglês | MEDLINE | ID: mdl-35960648

RESUMO

Oil palm empty fruit bunch (OPEFB) is lignocellulosic waste from the palm oil industry in Southeast Asia. It is difficult to degrade because of its complex matrix and recalcitrant structure. To decompose OPEFB, highly efficient micro-organisms and robust enzymatic systems are required. A bacterium with high degradation ability against untreated OPEFB was isolated from earthworm soil biofertilizer and designated as strain EW123T. Cells were Gram-stain-positive, rod-shaped and catalase-positive. In tests, the strain was negative for mycelium formation, motility, nitrate reductase and urease. The 16S rRNA gene analysis of the isolate showed 98.21 % similarity to Cellulomonas uda NBRC 3747T, whereas similarity to other species was below 98 %. The genome of strain EW123T was 3 834 009 bp long, with 73.97 mol% G+C content. Polar lipid analysis of strain EW123T indicated phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and aminophospholipid as the lipid components of the cell wall. The major cellular fatty acid was anteiso-C15 : 0 (41.26 %) and the isomer of 2,6-diaminopimelic acid (DAP) was meso-DAP. The average nucleotide identity value between the genome sequences of EW123T and C. uda NBRC 3747T was 88.6 %. In addition, the digital DNA-DNA hybridization and genome average amino acid between those strains were 36.1 and 89.68 %, respectively. The ORF number (186) of carbohydrate-active enzymes, including cellulases, xylanases, mannanase, lipase and lignin-degrading enzymes, was higher than those of related strains. These results indicate that the polyphasic characteristics of EW123T differ from those of other related species in the genus Cellulomonas. We therefore propose a novel species of the genus Cellulomonas, namely Cellulomonas palmilyticum sp. nov. (type strain TBRC 11805T=NBRC 114552T), with the ability to effectively degrade untreated OPEFB.


Assuntos
Cellulomonas , Oligoquetos , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Frutas , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
10.
Arch Microbiol ; 204(9): 580, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36030426

RESUMO

Endophytic bacteria inhabit all or part of their life cycle within the tissues of healthy plants, without causing any apparent symptoms of disease. They are treasure trove of several hydrolytic enzymes with distinct characteristics. Esterase is one of such enzymes and this study aims to characterize esterase produced by endophytic actinobacteria Cellulomonas fimi DB19 isolated from Zanthoxylum armatum with its capacity to degrade diesel oil. The enzyme was purified with purification fold 8.22 and specific activity 124.72 U/mg with 16.43% recovery. The purified enzyme showed a single protein band on SDS-PAGE having molecular mass of approximately 39 kDa. The Km and Vmax value for p-nitrophenyl acetate were 2.23 mM and 22.04 U/mL, respectively. The enzyme was stable in the pH range 6-9 with its optimal activity at pH 8.0. The enzyme was stable at 40 °C and retained more than 80% activity after incubation for two h. The enzyme activity was positively influenced in the presence of Na+, Ba2+, Ca2+, and negatively by Mn2+, and Mg2+. The EDTA and PMSF inhibited the enzyme activity and retained its activity in the presence of SDS, H2O2, ß-mercaptoethanol, and organic solvents. Application of the isolate in degradation of diesel showed that its growth and degradation capacity enhanced in media supplemented with 0.2-4% of diesel oil with maximum at 3% of diesel oil. Furthermore, esterase activity was greater in media containing diesel than control which is suggesting the plausible role of esterase produced by Cellulomonas fimi DB19 in the degradation of diesel oil.


Assuntos
Esterases , Zanthoxylum , Compostos Azo , Cellulomonas , Estabilidade Enzimática , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Temperatura
11.
Appl Environ Microbiol ; 88(15): e0096822, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862679

RESUMO

Cellulomonas flavigena is a saprotrophic bacterium that encodes, within its genome, four predicted lytic polysaccharide monooxygenases (LPMOs) from Auxiliary Activity family 10 (AA10). We showed previously that three of these cleave the plant polysaccharide cellulose by oxidation at carbon-1 (J. Li, L. Solhi, E.D. Goddard-Borger, Y. Mattieu et al., Biotechnol Biofuels 14:29, 2021, https://doi.org/10.1186/s13068-020-01860-3). Here, we present the biochemical characterization of the fourth C. flavigena AA10 member (CflaLPMO10D) as a chitin-active LPMO. Both the full-length CflaLPMO10D-Carbohydrate-Binding Module family 2 (CBM2) and catalytic module-only proteins were produced in Escherichia coli using the native general secretory (Sec) signal peptide. To quantify chitinolytic activity, we developed a high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) method as an alternative to the established hydrophilic interaction liquid ion chromatography coupled with UV detection (HILIC-UV) method for separation and detection of released oxidized chito-oligosaccharides. Using this method, we demonstrated that CflaLPMO10D is strictly active on the ß-allomorph of chitin, with optimal activity at pH 5 to 6 and a preference for ascorbic acid as the reducing agent. We also demonstrated the importance of the CBM2 member for both mediating enzyme localization to substrates and prolonging LPMO activity. Together with previous work, the present study defines the distinct substrate specificities of the suite of C. flavigena AA10 members. Notably, a cross-genome survey of AA10 members indicated that chitinolytic LPMOs are, in fact, rare among Cellulomonas bacteria. IMPORTANCE Species from the genus Cellulomonas have a long history of study due to their roles in biomass recycling in nature and corresponding potential as sources of enzymes for biotechnological applications. Although Cellulomonas species are more commonly associated with the cleavage and utilization of plant cell wall polysaccharides, here, we show that C. flavigena produces a unique lytic polysaccharide monooxygenase with activity on ß-chitin, which is found, for example, in arthropods. The limited distribution of orthologous chitinolytic LPMOs suggests adaptation of individual cellulomonads to specific nutrient niches present in soil ecosystems. This research provides new insight into the biochemical specificity of LPMOs in Cellulomonas species and related bacteria, and it raises new questions about the physiological function of these enzymes.


Assuntos
Cellulomonas , Oxigenases de Função Mista , Bactérias/metabolismo , Cellulomonas/metabolismo , Quitina/metabolismo , Ecossistema , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Especificidade por Substrato
12.
Arch Microbiol ; 204(7): 449, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35779121

RESUMO

A Gram-positive, motile, rod-shaped and lignin-degrading novel actinomycete, designated strain NEAU-YY56T, was isolated from the rhizosphere soil of wheat (Triticum aestivum L.) collected from Zhumadian, Henan Province, Central China and characterized using a polyphasic approach. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-YY56T belonged to the genus Cellulomonas and exhibited 16S rRNA gene sequence similarities of 98.7, 98.2 and 98.1% to Cellulomonas pakistanensis JCM 18755T, Cellulomonas denverensis JCM 14733T and Cellulomonas hominis JCM 12133T, respectively. The whole-cell sugars were glucose, rhamnose and ribose. The peptidoglycan of strain NEAU-YY56T contained ornithine and glutamic acid. The phospholipid profile was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannoside and two unknown glycolipids. The major menaquinone was MK-9(H4). The major fatty acids (> 5.0%) were identified as anteiso-C15:0, C16:0, C14:0 and anteiso-C17:0. Meanwhile, DNA G+C content was 74.7%. The morphological and chemotaxonomic properties of strain NEAU-YY56T were also confirmed the affiliation of the isolate to the genus Cellulomonas. However, physiological and biochemical characteristics indicated that strain NEAU-YY56T can be clearly differentiated from its closest relatives. In addition, the ANI values and dDDH levels between strain NEAU-YY56T and related Cellulomonas species were lower than the accepted threshold value. Therefore, it is concluded that strain NEAU-YY56T represents a novel species of the genus Cellulomonas, for which the name Cellulomonas triticagri sp. nov. is proposed. The type strain is NEAU-YY56T (= DSM 106717T = JCM 32550T).


Assuntos
Cellulomonas , Rizosfera , Técnicas de Tipagem Bacteriana , Cellulomonas/genética , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química , Microbiologia do Solo , Triticum
13.
Appl Microbiol Biotechnol ; 106(13-16): 5035-5049, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35799069

RESUMO

Valorization of the hemicellulose fraction of plant biomass is crucial for the sustainability of lignocellulosic biorefineries. The Cellulomonas genus comprises Gram-positive Actinobacteria that degrade cellulose and other polysaccharides by secreting a complex array of enzymes. In this work, we studied the specificity and synergy of two enzymes, CsXyn10A and CsAbf62A, which were identified as highly abundant in the extracellular proteome of Cellulomonas sp. B6 when grown on wheat bran. To explore their potential for bioprocessing, the recombinant enzymes were expressed and their activities were thoroughly characterized. rCsXyn10A is a GH10 endo-xylanase (EC 3.2.1.8), active across a broad pH range (5 to 9), at temperatures up to 55 °C. rCsAbf62A is an α-L-arabinofuranosidase (ABF) (EC 3.2.1.55) that specifically removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides (AXOS), xylan, and arabinan backbones, but it cannot act on double-substituted residues. It also has activity on pNPA. No differences were observed regarding activity when CsAbf62A was expressed with its appended CBM13 module or only the catalytic domain. The amount of xylobiose released from either wheat arabinoxylan or arabino-xylo-oligosaccharides increased significantly when rCsXyn10A was supplemented with rCsAbf62A, indicating that the removal of arabinosyl residues by rCsAbf62A improved rCsXyn10A accessibility to ß-1,4-xylose linkages, but no synergism was observed in the deconstruction of wheat bran. These results contribute to designing tailor-made, substrate-specific, enzymatic cocktails for xylan valorization. KEY POINTS: • rCsAbf62A removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides, xylan, and arabinan backbones. • The appended CBM13 of rCsAbf62A did not affect the specific activity of the enzyme. • Supplementation of rCsXyn10A with rCsAbf62A improves the degradation of AXOS and xylan.


Assuntos
Cellulomonas , Xilanos , Cellulomonas/genética , Cellulomonas/metabolismo , Fibras na Dieta , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Hidrólise , Oligossacarídeos/metabolismo , Especificidade por Substrato , Xilanos/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-35100105

RESUMO

A yellow-coloured, Gram-stain-positive, motile, aerobic and rod-shaped bacteria, designated DKR-3T, was isolated from oil-contaminated experimental soil. Strain DKR-3T could grow at pH 5.0-10.5 (optimum, pH 7.0-8.5), at 10-40 °C (optimum, 25-32 °C) and tolerated 3.5 % of NaCl. Phylogenetic analyses based on its 16S rRNA gene sequence indicated that strain DKR-3T formed a lineage within the family Cellulomonadaceae and was clustered with members of the genus Cellulomonas. Strain DKR-3T had highest 16S rRNA gene sequence similarities to Cellulomonas gelida DSM 20111T (98.3 %), Cellulomonas persica JCM 18111T (98.2 %) and Cellulomonas uda DSM 20107T (97.8 %). The predominant respiratory quinone was tetrahydrogenated menaquinone with nine isoprene units [MK-9(H4)]. The principal cellular fatty acids were anteiso-C15 : 0, C16 : 0 and anteiso-C17 : 0. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The cell-wall diamino acid was l-ornithine whereas rhamnose and glucose were the cell-wall sugars. The DNA G+C content was 74.2mol %. The genome of strain DKR-3T was 3.74 Mb and contained three putative biosynthetic gene clusters. The average nucleotide identity and digital DNA-DNA hybridization relatedness values between strain DKR-3T and its phylogenetically related members were below the species threshold values. Based on a polyphasic study, strain DKR-3T represents a novel species belonging to the genus Cellulomonas, for which the name Cellulomonas fulva sp. nov. is proposed. The type strain is DKR-3T (=KACC 22071T=NBRC 114730T).


Assuntos
Cellulomonas , Poluição por Petróleo , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Cellulomonas/classificação , Cellulomonas/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes do Solo
15.
Arch Microbiol ; 204(2): 139, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032191

RESUMO

In the present study, 27 bacterial strains were isolated from environmental samples and screened for higher lignocellulose-degrading efficiency. The best degrader was combined in pairs with 14 strains with high ß-glucosidase activity to formulate a consortium. Microbial consortium 625 showed high lignocellulose degradation efficiency. ZJW-6 with low ß-glucosidase activity and the best lignocellulose decomposer was identified as a member of Cellulomonas. Consortium 625 composed of ZJW-6 and DA-25, an Acinetobacter, showed the highest degradation rate (57.62%) under optimized conditions. The DA-25 filtrate promoted ZJW-6 growth, upregulating the activity of key lignocellulose-degrading enzymes, including ß-glucosidase, endoglucanase, xylanase, laccase, and lignin peroxidase. ZJW-6 and DA-25 worked in a subordination manner when co-cultivated. ZJW-6 acted as the major decomposer whose growth and enzymatic activities were promoted by DA-25. This study proposes a novel microbial consortium with improved lignocellulose degradation efficiency and reduce the C:N ratio of lignocellulose materials, which can enhance bioenergy production.


Assuntos
Acinetobacter , Cellulomonas , Lignina , Consórcios Microbianos
16.
Front Cell Infect Microbiol ; 12: 1082674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710963

RESUMO

Cellulomonas sp. HM71, a human gut microbe possesses metabolic machinery to catabolize antigenic gluten, hence, holds promises as microbial therapy to treat gluten-derived celiac disease. However, its efficacy, safety, and survivability in the gastrointestinal ecosystem await functional elucidation. The current study is designed to characterize Cellulomonas sp. HM71 for its physiological, genomic, and probiotic properties. The morphological and physiological assessment indicates it as a coccus-shaped gram-positive bacterium growing optimally at 30°C in a neutral environment (pH 7.0). Cellulomonas sp. HM71 showed continuous growth even in stressful environments (salinity up to 3% NaCl and 6% KCl), variable temperature (25°C to 35°C) and pH (5-9), antibiotics, and gastric and intestinal conditions. The Cellulomonas sp. HM71 genome harbors diversified genetic machinery to modulate humongous metabolic potential for the host. This was substantiated by the hemolytic and CaCo-2 cell line assay which confirms its cellular adherence and biosafety. Notably, genome analysis did not identify any pathogenic islands. Probiotic characterization indicates its potential to overcome waterborne infections and digestion-related disorders. Cumulatively, Cellulomonas sp. HM71 can be considered a probiotic strain for improving human health because of the highlighted functions.


Assuntos
Cellulomonas , Probióticos , Humanos , Cellulomonas/genética , Cellulomonas/química , Análise de Sequência de DNA , Células CACO-2 , Ecossistema , Glutens , RNA Ribossômico 16S/genética
17.
Ying Yong Sheng Tai Xue Bao ; 32(8): 2982-2988, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34664473

RESUMO

In this study, three dominant bacteria Cellulomonas flavigena (Ⅰ), Cellulomonas flavigena (Ⅱ), Sphingomonas paucimobilis (Ⅲ) from Fire Phoenix rhizosphere soil were used to develop a multi-microbial agent system. For oil-contaminated soil in the Dagang oilfield, the immobilized test bacteria were inoculated into the Fire Phoenix rhizosphere soil to examine the effects of bacterial agents on polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. The results showed that PAHs degradation was promoted under the ⅠⅢ (with an effective number of viable bacteria of 109 cfu·mL-1) and ⅠⅡⅢ (with an effective number of viable bacteria of 107 cfu·mL-1) treatments. The PAHs degradation rates were 32.2% and 41.4%, respectively, being significantly higher than that in the control treatments. The ⅠⅡⅢ treatment significantly promoted the belowground biomass of Fire Phoenix, which was 31.2% higher than that of the control treatment. Our results suggested that the multi-microbial agent constructed by the three dominant bacteria ⅠⅡⅢ could be used as a strengthening method for the remediation of PAHs-contaminated soil by Fire Phoenix, which provided a novel method for microbial enhanced phytoremediation technology.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Bactérias , Cellulomonas , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Sphingomonas
18.
Artigo em Inglês | MEDLINE | ID: mdl-34569921

RESUMO

Cellulomonas algicola KZ-21T was compared with Cellulomonas aurantiaca THG-SMD2.3T to examine the taxonomic relationship between the two type strains. The 16S rRNA gene sequence of Cellulomonas algicola KZ-21T shared complete similarity (100.0 %) with that of Cellulomonas aurantiaca THG-SMD2.3T. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the two strains formed a tight cluster within the genus Cellulomonas. Genome comparison between the two strains revealed an average nucleotide identity of 99.2 % and a digital DNA-DNA hybridization estimate of 93.7±1.8 %, strongly indicating that the two strains belong to a single species. In addition, neither strain displayed any striking differences in metabolic, physiological or chemotaxonomic features. Therefore, we propose Cellulomonas aurantiaca as a later heterotypic synonym of Cellulomonas algicola.


Assuntos
Cellulomonas , Técnicas de Tipagem Bacteriana , Composição de Bases , Cellulomonas/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
J Microbiol Biotechnol ; 31(11): 1519-1525, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34489371

RESUMO

Hexavalent chromium (Cr(VI)) is recognized to be carcinogenic and toxic and registered as a contaminant in many drinking water regulations. It occurs naturally and is also produced by industrial processes. The reduction of Cr(VI) to Cr(III) has been a central topic for chromium remediation since Cr(III) is less toxic and less mobile. In this study, fermentative Fe(III)-reducing bacterial strains (Cellu-2a, Cellu-5a, and Cellu-5b) were isolated from a groundwater sample and were phylogenetically related to species of Cellulomonas by 16S rRNA gene analysis. One selected strain, Cellu-2a showed its capacity of reduction of both soluble iron (ferric citrate) and solid iron (hydrous ferric oxide, HFO), as well as aqueous Cr(VI). The strain Cellu-2a was able to reduce 15 µM Cr(VI) directly with glucose or sucrose as a sole carbon source under the anaerobic condition and indirectly with one of the substrates and HFO in the same incubations. The heterogeneous reduction of Cr(VI) by the surface-associated reduced iron from HFO by Cellu-2a likely assisted the Cr(VI) reduction. Fermentative features such as large-scale cell growth may impose advantages on the application of bacterial Cr(VI) reduction over anaerobic respiratory reduction.


Assuntos
Biodegradação Ambiental , Cellulomonas/metabolismo , Cromo/metabolismo , Compostos Férricos/metabolismo , Fermentação , Água Subterrânea/microbiologia , Filogenia , RNA Ribossômico 16S , República da Coreia
20.
Biosci Biotechnol Biochem ; 85(9): 1971-1985, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232281

RESUMO

Cellulomonas uda produces Xyn11A, moderately thermostable xylanase, with optimal activity at 50 °C and pH 6.5. An improvement in the biochemical properties of Xyn11A was achieved by site-directed mutagenesis approach. Wild-type xylanase, Xyn11A-WT, and its mutant Xyn11A-N9Y were expressed in Escherichia coli, and then both enzymes were purified and characterized. Xyn11A-N9Y displayed optimal activity at 60 °C and pH 7.5, an upward shift of 10 °C in the optimum temperature and an upward shift of 1 unit in optimum pH; also, it manifested an 11-fold increase in thermal stability at 60 °C, compared to that displayed by Xyn11A-WT. Molecular dynamics simulations of Xyn11A-WT and Xyn11A-N9Y suggest that the substitution N9Y leads to an array of secondary structure changes at the N-terminal end and an increase in the number of hydrogen bonds in Xyn11A-N9Y. Based on the significant improvements, Xyn11A-N9Y may be considered as a candidate for several biotechnological applications.


Assuntos
Cellulomonas/enzimologia , Endo-1,4-beta-Xilanases/genética , Mutação , Sequência de Aminoácidos , Catálise , Endo-1,4-beta-Xilanases/química , Escherichia coli/genética , Simulação de Dinâmica Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...